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BACKGROUND
Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The 
effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines 
on viral replication in both upper and lower airways is important to evaluate in 
nonhuman primates.

METHODS
Nonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the 
prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell 
responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. 
Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and 
nasal swab specimens were assessed by polymerase chain reaction, and histopatho-
logical analysis and viral quantification were performed on lung-tissue specimens.

RESULTS
The mRNA-1273 vaccine candidate induced antibody levels exceeding those in hu-
man convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution 
(ID50) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg 
dose group. Vaccination induced type 1 helper T-cell (Th1)–biased CD4 T-cell re-
sponses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was 
not detectable in BAL fluid by day 2 after challenge in seven of eight animals in 
both vaccinated groups. No viral replication was detectable in the nose of any of 
the eight animals in the 100-μg dose group by day 2 after challenge, and limited 
inflammation or detectable viral genome or antigen was noted in lungs of animals 
in either vaccine group.

CONCLUSIONS
Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 
neutralizing activity, rapid protection in the upper and lower airways, and no patho-
logic changes in the lung. (Funded by the National Institutes of Health and others.)
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Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), the causative 
agent of coronavirus disease 2019 (Covid-19), 

is responsible for the 2020 global pandemic.1,2 
Developing a vaccine that is safe, effective, and 
rapidly deployable is an urgent global health pri-
ority. The majority of vaccine candidates have fo-
cused on inducing antibody responses against the 
trimeric SARS-CoV-2 spike (S) protein, a class I 
fusion protein that facilitates binding to the an-
giotensin-converting–enzyme 2 (ACE2) receptor 
and triggers virus–cell-membrane fusion.3 A vari-
ety of vaccine approaches4 and formulations for 
targeting the SARS-CoV-2 S protein are being 
pursued, including nucleic acid vaccines (RNA 
and DNA),5-8 human and simian replication-defec-
tive adenoviral vaccines,9,10 whole-inactivated SARS-
CoV-2,11,12 and subunit protein vaccines.13

In assessing the immunogenicity and protec-
tion of vaccines in preclinical animal models, 
nonhuman primates provide several advantages for 
clinical translation. They are outbred, have great-
er similarity to humans than rodents in innate 
immune responses and B-cell and T-cell reper-
toires, and allow for the use of clinically relevant 
vaccine doses. Recent studies have shown that 
SARS-CoV-2 targets similar replication sites and 
recapitulates some aspects of Covid-19–like dis-
ease in nonhuman primates.7,14 After SARS-CoV-2 
infection, nonhuman primates have transient 
viral replication in the upper and lower airways 
and mild inflammation in the lung that resolves 
within 14 days.7 Thus, nonhuman primates are a 
useful animal model for assessing vaccine-medi-
ated protection against early viral replication.7,14

The use of messenger RNA (mRNA) is a prom-
ising approach for Covid-19 vaccination, since it 
combines rapid manufacturing and expeditious 
modification of the encoded immunogen, both 
of which accelerate vaccine development.14 RNA 
vaccines encoding viral antigens have been shown 
to be safe and immunogenic in several clinical 
trials,5,15 including in a recent phase 1 clinical 
trial of mRNA-1273, a SARS-CoV-2 vaccine can-
didate.16 Data from a mouse model showing that 
a low dose of mRNA-1273 induced a robust neu-
tralizing antibody response and high-level pro-
tection against SARS-CoV-26 raised the possibility 
that vaccination with mRNA-1273 could prevent 
or limit both upper- and lower-airway infection 
in nonhuman primates.

Me thods

Vaccine mRNA and Lipid Nanoparticle 
Production

We synthesized a sequence-optimized mRNA en-
coding prefusion-stabilized SARS-CoV-2 S-2P pro-
tein in vitro. The mRNA was purified by oligo-dT 
affinity purification and encapsulated in a lipid 
nanoparticle through a modified ethanol-drop 
nanoprecipitation process, as described previously.17

Rhesus Macaque Model

Experiments in animals were performed in com-
pliance with National Institutes of Health (NIH) 
regulations and with approval from the Animal 
Care and Use Committee of the Vaccine Research 
Center and from Bioqual (Rockville, MD). Chal-
lenge studies were conducted at Bioqual. The au-
thors vouch for the accuracy and completeness of 
the data in this report.

Female and male Indian-origin rhesus ma-
caques (12 of each sex; age range, 3 to 6 years) 
were sorted according to sex, age, and weight 
(see Supplementary Appendix 2, available with the 
full text of this article at NEJM.org) and then 
stratified into groups of three. Within each stra-
tum, one of the three animals was assigned to 
each study group arbitrarily. Animals were vac-
cinated intramuscularly at week 0 and at week 4 
with either 10 or 100 μg of mRNA-1273 in 1 ml 
of 1× phosphate-buffered saline (PBS) into the 
right hind leg. Unvaccinated control animals were 
administered an equal volume of 1× PBS. At 
week 8 (4 weeks after the second vaccination), 
all animals were challenged with a total dose of 
7.6×105 plaque-forming units (PFU). The stock 
of 1.9×105 PFU per milliliter SARS-CoV-2 (USA-
WA1/2020 strain) was administered in a volume 
of 3 ml by the intratracheal route and in a vol-
ume of 1 ml by the intranasal route (0.5 ml per 
nostril). Pre- and postchallenge specimen collec-
tion is detailed in Figure S1 in Supplementary 
Appendix 1 (note that all supplementary figures 
and tables cited in the main article text are lo-
cated in Supplementary Appendix 1).

Quantification of SARS-CoV-2 RNA  
and Subgenomic RNA

Polymerase chain reaction (PCR) was used to 
quantify viral RNA, and subgenomic RNA was 
used to quantify replicating RNA in bronchoalve-
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olar-lavage (BAL) fluid and nasal swab specimens, 
as described previously.18

Histopathology

Nonhuman primate SARS-CoV-2–infected lung 
tissue specimens were fixed, processed, embedded 
in paraffin, sectioned, and stained with hema-
toxylin and eosin. Immunohistochemical stain-
ing with the use of rabbit polyclonal SARS-CoV-2 
(GeneTex) was performed with formalin-fixed, 
paraffin-embedded lung-tissue sections. Chromo-
genic in situ hybridization (CISH) was performed 
with RNAscope technology, as described previ-
ously.19 The RNAscope 2.5 LS Probe V-nCoV2019-S 
(Advanced Cell Diagnostics) was used as the tar-
get probe to detect positive-sense SARS-CoV-2.

Human Convalescent-Phase Serum

A panel of 42 human convalescent-phase serum 
specimens were obtained from persons between 
18 and 84 years of age who had mild, moderate, 
or severe Covid-19 under institutional review 
board–approved specimen-collection protocols 
at the NIH Clinical Center (Bethesda, MD) 
(ClinicalTrials.gov number, NCT00067054), 
Aaron Diamond AIDS Research Center, Columbia 
University (New York) (NCT04342195), and the 
University of Washington (Seattle) (Hospitalized 
or Ambulatory Adults with Respiratory Viral In-
fection [HAARVI] study and STUDY00000959). 
Written informed consent was provided by all 
participants. Participants had a history of labo-
ratory-confirmed SARS-CoV-2 infection roughly 
1 to 2 months before they provided specimens.

Serum Antibody Measurements

Total SARS-CoV-2 S-2P–specific or N-specific IgG 
in serum was quantified by enzyme-linked im-
munosorbent assay (ELISA); the methods used 
were similar to previously published methods.6 
ACE2 binding inhibition was completed, as de-
scribed previously,16 on 1:40 diluted serum sam-
ples with the use of Mesoscale Discovery 384-well, 
4-Spot Custom Serology SECTOR plates precoated 
with SARS-CoV-2 receptor-binding domain. Bind-
ing was detected with SULFO-TAG–labeled ACE2. 
Both reagents were supplied by the manufacturer 
(Meso Scale Diagnostics) free of charge.

Pseudoviruses were produced by cotransfection 
of plasmids encoding SARS-CoV-2 S (Wuhan-1, 
GenBank accession number, MN908947.3), lucif-
erase reporter, lentivirus backbone, and human 
transmembrane protease, serine 2 (TMPRSS2), into 

HEK293T/17 cells (ATCC), and neutralization was 
assessed as described previously.6,16 Live-virus 
neutralization was assessed with a full-length 
SARS-CoV-2 virus based on the Seattle isolate, 
which was designed to express luciferase and was 
recovered by means of reverse genetics, as de-
scribed previously.20-22

Intracellular Cytokine Staining

Cryopreserved peripheral-blood mononuclear cells 
were thawed, rested overnight, and stimulated 
with SARS-CoV-2 S protein (S1 and S2, homolo-
gous to the vaccine insert) and nucleoprotein (N) 
peptide pools (JPT Peptide Technologies) and co-
stimulatory antibodies anti-CD28 and anti-CD49d 
(clones CD28.2 and 9F10, BD Biosciences). Nega-
tive controls received an equal concentration of 
dimethyl sulfoxide (without peptides) and costimu-
latory antibodies. Cytokine staining was performed 
as described previously,23 with amendments to the 
monoclonal antibodies used as detailed in Sup-
plementary Appendix 1.

Statistical Analysis

For the prespecified primary analysis of viral load 
in the BAL fluid and nasal swab specimens, the 
peak over days 2 through 7 for each animal was 
compared with Mann–Whitney tests and a hierar-
chical testing procedure in which the 100-μg dose 
group was compared with the control group first, 
and only if that comparison was significant at a 
P value of  less than 0.05 was the 10-μg dose 
group then compared with both the control group 
and the 100-μg dose group. For all other mea-
sures, groups were compared by Kruskal–Wallis 
test, followed by pairwise Mann–Whitney tests 
with Holm’s adjustment on the set of pairwise 
tests if the Kruskal–Wallis test indicated signifi-
cance. Correlations were estimated and tested 
with the use of Spearman’s nonparametric meth-
od. Positivity with respect to intracellular cytokine 
responses was determined with the MIMOSA 
(Mixture Models for Single-Cell Assays) algo-
rithm.24 Primary data for all graphs and tables are 
provided in Supplementary Appendix 2.

R esult s

Antibody Responses after mRNA-1273 
Vaccination

First, we evaluated temporal SARS-CoV-2 S-2P–
specific antibody responses after vaccination. IgG 
binding to the conformationally defined prefu-

The New England Journal of Medicine 
Downloaded from nejm.org on December 8, 2020. For personal use only. No other uses without permission. 

 Copyright © 2020 Massachusetts Medical Society. All rights reserved. 



n engl j med 383;16 nejm.org October 15, 2020 1547

Vaccine against SARS-CoV-2 in Nonhuman Primates

sion S-2P protein25,26 was increased over baseline 
in a dose-dependent manner after two vaccina-
tions, reaching an area under the curve of 8241 
and 36,186 by 4 weeks after the second vaccina-

tion with 10 and 100 μg of mRNA-1273, respec-
tively (Fig. 1A). Similarly, there was a dose-depen-
dent increase in neutralizing activity measured 
with a pseudotyped lentivirus reporter. Animals 

Figure 1. Antibody Responses after mRNA-1273 Vaccination in Rhesus Macaques.

Animals were administered phosphate‑buffered saline (PBS) as a control or 10 μg or 100 μg of mRNA‑1273. Serum specimens were 
 assessed for severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) S‑specific IgG by enzyme‑linked immunosorbent assay 
 (ELISA) (Panel A) and SARS‑CoV‑2 pseudovirus neutralization (Panel B) at all time points after the first and second vaccinations. Data 
in Panel A are the area under the curve (AUC) and indicate the amount of IgG binding to S‑2P over time, and data in Panel B are the re‑
ciprocal 50% inhibitory dilution (ID50). Faint lines in Panels A and B represent individual animals, and bold lines represent the geometric 
mean titer for each group. S‑specific IgG (Panel C), pseudovirus neutralization (Panel D), inhibition of angiotensin‑converting enzyme 2 
(ACE2) binding to the receptor‑binding domain (RBD) (Panel E), and live‑virus neutralization by NanoLuc reporter assay (Promega) 
(Panel F) were assessed at 4 weeks after the second vaccination, immediately before challenge. Results were compared with the anti‑
body responses in a panel of human convalescent‑phase serum specimens (Conv.) (42 specimens in Panels C, D, and E and 26 speci‑
mens in Panel F). In Panel E, the amount of signal emitted in wells containing no specimen was used as the maximal binding response 
against which each factor reduction was measured. In the box‑and‑whisker plots, the horizontal line indicates the median, the top and 
bottom of the box the interquartile range, and the whiskers the range. Symbols represent individual animals and overlap with one another 
for equal values where constrained. Dashed lines indicate the assay limit of detection.
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vaccinated with 10 μg of mRNA-1273 had a recip-
rocal 50% inhibitory dilution (ID50) geometric 
mean titer (GMT) of 63 at 4 weeks after the first 
vaccination, which increased to 103 by 4 weeks 
after the second vaccination. Neutralizing activ-
ity at 4 weeks after the first vaccination in animals 
that received 100 μg (GMT, 305) was 5 times that 
seen at the lower dose and rose to a GMT of 1862 
after the second vaccination (Fig. 1B). The S-spe-
cific IgG binding (Fig. 1C) and neutralizing GMT 
(Fig. 1D) elicited by vaccination with 100 μg of 
mRNA-1273 at 4 weeks after the second vaccina-
tion were 5 times and 15 times as high, respec-
tively, as in convalescent-phase serum specimens 
from a panel of 42 humans representing a full 
range of disease severity (see Supplementary Ap-
pendix 2).

We extended those analyses to assess anti-
body responses to specific domains of S and used 
two additional orthogonal in vitro approaches to 
measure functional viral inhibition. First, since 
a critical mechanism for productive infection in 
vivo is the interaction of the S receptor-binding 
domain with viral receptor ACE2, we explored 
antibodies against this target of vulnerability. 
We determined whether serum from mRNA-1273–
vaccinated animals could bind the receptor-bind-
ing domain in ELISA or inhibit binding to ACE2. 
Indeed, mRNA-1273–vaccinated nonhuman pri-
mates produced more potent receptor-binding do-
main–specific serum antibodies than were seen in 
convalescent-phase human serum specimens 
(Fig. S2A). Moreover, serum from animals in the 
100-μg dose group had inhibition of ACE2 bind-
ing to the receptor-binding domain that was 938 
times as high as that in serum from animals in 
the control group and 348 times as high as that 
in human convalescent-phase serum (Fig. 1E).

Binding to the N-terminal domain of S1 was 
then assessed, because a potential major benefit 
of targeting domains other than the receptor-
binding domain is to establish a polyclonal an-
tibody response that recognizes multiple func-
tional S domains to achieve inhibition of viral 
attachment,27-31 additive neutralizing activity,32 
and postattachment fusion inhibition.33 Target-
ing multiple epitopes may also mitigate the pos-
sibility of immune escape by antigenic drift.27 
Here, mRNA-1273 elicited more S1 N-terminal 
domain–specific antibody responses than human 
convalescent-phase serum (Fig. S2B). Lastly, neu-
tralizing activity was measured with a live 

SARS-CoV-2 reporter virus. Animals vaccinated 
with 10 or 100 μg of mRNA-1273 had reciprocal 
ID50 GMTs of 501 and 3481, respectively, values 
that are 12 times and 84 times as high, respec-
tively, as in human convalescent-phase serum 
(Fig. 1F). These data show that mRNA-1273 in-
duced robust S-specific antibody responses, tar-
geting both the receptor-binding domain and the 
N-terminal subdomains of S1 with potent neu-
tralizing capacity.

T-Cell Responses after mRNA-1273 Vaccination

SARS-CoV-2–specific T-cell immunity may have a 
role in pathogenesis or protection against SARS-
CoV-2 and can influence the humoral immune 
response.34-36 Activated CD4 T cells are critical for 
B-cell activation and antibody production and can 
be segregated into functional subsets on the basis 
of their production of specific cytokines. The 
induction of CD4 type 2 helper T-cell (Th2) (in-
terleukin-4, -5, or -13) responses has been asso-
ciated with vaccine-associated enhanced respira-
tory disease (VAERD), as seen in some patients 
with respiratory virus infections, such as respi-
ratory syncytial virus infection and measles,19,20 
as well as in animal models of Middle East re-
spiratory syndrome coronavirus (MERS-CoV).21 
VAERD is generally not observed when a CD4 Th1 
(interferon-γ, interleukin-2, tumor necrosis factor 
α) response occurs in the absence of a Th2 re-
sponse.35,37-39 Thus, we used 19-color multiparam-
eter flow cytometry to assess the functional het-
erogeneity of S-specific CD4 and CD8 T-cell 
cytokine responses after mRNA-1273 vaccination.

A dose-dependent increase in Th1 responses 
was noted 4 weeks after the second vaccination; 
four of eight animals in the 10-μg dose group 
and seven of seven animals in the 100-μg dose 
group (one animal in this group could not be 
evaluated for technical reasons) had Th1 re-
sponses. Th1 response levels were higher in the 
100-μg dose group than in the control group or 
in the 10-μg dose group. Even at the 10-μg dose, 
Th1 responses were higher than in the control 
group (Fig. 2A). In contrast, Th2 responses were 
low to undetectable in both vaccine dose groups 
(Fig. 2B). CD8 T-cell responses were also low to 
undetectable after mRNA-1273 vaccination.

We extended the analysis of CD4 T-cell re-
sponses, given their importance in regulating 
antibody responses. CD40L is a cell-surface mark-
er expressed after CD4 T-cell activation that 
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mediates B-cell activation for efficient isotype 
switching; three of eight animals in the 10-μg 
dose group and seven of seven animals in the 
100-μg dose group had S-specific CD40L+ CD4 
T-cell responses, and 100 μg of mRNA-1273 in-
duced greater responses than the PBS control 
(Fig. 2C). Since nucleoside-modified RNA vac-
cines encoding various viral antigens have been 
shown to induce robust antibody responses in 
nonhuman primates in association with increased 
CD4 T follicular helper (Tfh) cells,40 we measured 
interleukin-21, the canonical cytokine produced 
by Tfh cells. Tfh cells are critical for the forma-
tion of germinal centers and generation of long-
term B-cell memory. Four of eight animals in the 

10-μg dose group and seven of seven animals in 
the 100-μg dose group had interleukin-21 respons-
es; the responses differed between the 100-μg dose 
group and the control and 10-μg dose groups, as 
well as between the 10-μg dose group and the 
control group (Fig. 2D). These data show that 
mRNA-1273 induced Th1 and interleukin-21–
producing Tfh-cell responses. We did not find 
evidence of Th2 or CD8 T-cell responses in this 
study.

 Protective Efficacy against Upper- 
and Lower-Airway SARS-CoV-2 Infection

To evaluate the protective efficacy of mRNA-1273, 
all animals were challenged by combined intra-

Figure 2. T-Cell Responses after mRNA-1273 Vaccination in Rhesus Macaques.

Intracellular staining was performed on peripheral blood mononuclear cells at 8 weeks, immediately before challenge, to assess T‑cell 
responses to the SARS‑CoV‑2 S1 peptide pool. Panel A shows type 1 helper T‑cell (Th1) responses (interferon‑γ, interleukin‑2, or tumor 
necrosis factor α), Panel B Th2 responses (interleukin‑4 or 13), Panel C CD40L up‑regulation, and Panel D interleukin‑21 from peripheral 
follicular helper T (Tfh) cells (central memory CXCR5+PD‑1+ICOS+ CD4 T cells). Positivity with respect to intracellular cytokine respons‑
es was determined with the MIMOSA algorithm; numbers of animals positive and total numbers of animals are shown as fractions be‑
low each group. In the box‑and‑whisker plots, the horizontal line indicates the median, the top and bottom of the box the interquartile 
range, and the whiskers the range. Open symbols represent animals with a probable nonresponse, and solid symbols represent animals 
with a probable response. Dashed lines are used to highlight 0.0%.
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tracheal and intranasal routes with a total dose 
of 7.6×105 PFU, approximately equivalent to 106

50% tissue-culture infectious doses (TCID50), ad-
ministered 4 weeks after the second vaccination. 
This challenge route and dose were based on a 
model development study in which we challenged 
nonhuman primates that had no previous expo-
sure to the virus with different doses of SARS-
CoV-2 administered by the intratracheal–intrana-
sal or endobronchial route (see Supplementary 
Appendix 2). The objective was to deliver virus to 
both the upper and lower airways in order to de-
tect levels of virus that were similar to what has 
been detected in nasal secretions of humans after 
SARS-CoV-2 infection.41 The predefined primary 
end points of the study were the difference in 
the viral load in BAL fluid between the vaccine 
groups and the control group. The analysis of the 
efficacy end point involved PCR and subgenomic 
RNA PCR, similar to other studies of SARS-CoV2 
vaccines in nonhuman primates,10,14 to quantify 
input virus and replicating virus, respectively.

Two days after challenge, only one of eight 
animals in each of the vaccine dose groups had 
detectable subgenomic RNA in BAL fluid, as 
compared with eight of eight animals in the con-
trol group (Fig. 3A). By day 2, none of the eight 
animals in the 100-μg dose group had detectable 
subgenomic RNA detected in nasal swab speci-

mens, as compared with five of eight animals in 
the 10-μg dose group and six of eight animals 
in the control group (Fig. 3B). On day 4, two of 
eight animals in the 10-μg dose group and one 
of eight animals in the 100-μg dose group had 
low levels of subgenomic RNA detected in the 
nose. In accordance with the prespecified statis-
tical analysis, the peak levels of subgenomic 
RNA over days 2 through 7 were significantly 
lower in both the 100-μg dose group and the 
10-μg dose group than in the control group, in 
both BAL fluid specimens (P<0.001 for both com-
parisons) and nasal swab specimens (P = 0.009 
and P = 0.03, respectively). Furthermore, total 
RNA levels were significantly lower in BAL fluid 
in both the 100-μg dose group and the 10-μg 
dose group than in the control group (P<0.001 
for both comparisons) (Fig. S3). With regard to 
nasal secretions, animals vaccinated with 100 μg 
of mRNA-1273 also had lower total RNA levels 
than animals in the control group (P = 0.03) or in 
the 10-μg dose group (P = 0.003).

To extend these analyses and provide addi-
tional evidence for limited viral infection in the 
lung, a panel of innate cytokines and chemokines 
were assessed in BAL fluid at days 2 and 4 after 
challenge. Inflammatory cytokine induction was 
limited in both dose groups, which suggests that 
there was rapid control of virus sufficient to 

Figure 3. Efficacy of mRNA-1273 against Upper and Lower Respiratory Viral Replication.

Bronchoalveolar‑lavage (BAL) fluid (Panel A) and nasal swab (Panel B) specimens were obtained on days 1, 2, 4, 
and 7 after challenge, where applicable, and viral replication was assessed by analysis of SARS‑CoV‑2 subgenomic 
RNA. In the box‑and‑whisker plots, the horizontal line indicates the median, the top and bottom of the box the in‑
terquartile range, and the whiskers the range. Symbols represent individual animals and overlap with one another 
for equal values where constrained. Dashed lines indicate the assay limit of detection.
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limit innate immune activation (Fig. S4). These 
data show rapid control of viral replication within 
2 days in both the upper and lower airways.

To assess potential immune correlates of pro-
tection, mRNA-1273–induced serum neutraliza-
tion activity at the time of challenge was ana-
lyzed in the context of protection as defined by 
viral PCR and subgenomic RNA in BAL fluid and 
nasal secretions. Overall, the antibody measure-
ments, including measurements of in vitro viral 
neutralization, were negatively correlated with 
nasal secretion viral PCR results at day 2 after 
challenge (Fig. S5). To explore potential immune 
mechanisms mediating rapid control of viral 
replication in the lung, we measured postchal-
lenge antibody levels in BAL fluid; a dose-depen-
dent increase in S-specific IgG was noted in BAL 
fluid from vaccine recipients as compared with 
animals in the control group. S-specific IgA re-
sponses in BAL fluid were lower than IgG re-
sponses but were also increased in the 100-μg dose 
group (Fig. S6). Postchallenge humoral S- and 
N-specific IgG increased in control animals with-
in 2 weeks after challenge, whereas antibody 
levels in mRNA-1273–vaccinated animals remained 
stable; thus, no anamnestic response was found 
after challenge (Fig. S7).

Pathology and Viral Load in Lung Tissue 
after Challenge

Consistent with previous reports,14,42,43 SARS-
CoV-2 infection in the control animals caused 
moderate-to-severe inflammation that often in-
volved the small airways and the adjacent alveo-
lar interstitia. Alveolar air spaces occasionally 
contained inflammatory cell infiltrates, alveolar 
capillary septa were moderately thickened, and 
moderate and diffuse type II pneumocyte hyper-
plasia was seen. Multiple pneumocytes in the 
lung sections from the control group were posi-
tive for both SARS-CoV-2 viral RNA and antigen, 
as assessed by CISH and immunohistochemical 
analysis (Fig. 4; results of these analyses for days 
7 through 15 are summarized in Table S1). At 
day 7, in animals vaccinated with 10 μg of 
mRNA-1273, inflammation was mild, and no 
viral RNA was detected (Fig. 4A). However, at 
day 8, one animal in the 10-μg dose group had 
a single pneumocyte that was positive for viral 
antigen (Fig. S8). No substantial inflammation 
was observed in the lungs of nonhuman pri-

mates vaccinated with 100 μg of mRNA-1273, 
and neither viral RNA nor antigen was detected 
at day 7 or 8 after challenge (Fig. 4A). In addi-
tion to the lung sections from these earlier time 
points, lung sections from animals that were 
killed at day 14 or 15 after challenge had no evi-
dence of substantial inflammation, and neither 
viral RNA nor viral antigen was detected in any of 
the groups, including the control group. Vaccine-
associated immunopathologic changes were not 
observed in any of the sections examined.

Discussion

Previous vaccine studies in nonhuman primates 
with recombinant chimpanzee-derived adenovi-
rus vector vaccine from Oxford (ChAdOX) or DNA 
vaccine showed protection against lower-airway 
viral replication and against pathologic changes 
in the lung after challenge with approximately 
106 TCID50 (for the ChAdOX vaccine)10 or 104 PFU 
(for the DNA vaccine)7 of SARS-CoV-2. However, 
these studies provided no evidence of a reduc-
tion of viral replication in nasal tissue, raising 
questions as to whether these vaccines could 
affect virus transmission. In contrast, our study 
showed early prevention of viral replication in 
the upper and lower airways after a high-dose 
challenge (approximately 8×105 PFU) with SARS-
CoV-2. The ability to limit viral replication in 
both the lower and the upper airways has impor-
tant implications for vaccine-induced prevention 
of both SARS-CoV-2 disease and transmission.

This study shows that mRNA-1273 induced 
robust S-specific antibody and neutralizing ac-
tivity, which we confirmed with several orthogo-
nal serologic assays. The antibody-binding activ-
ity and neutralizing activity were substantially 
higher than previously reported in nonhuman 
primates vaccinated with whole-inactivated,11,12 
DNA,7 or adenovirus vector vaccines,9,10 all of which 
were shown to provide protection of the lower 
airways after a range of different SARS-CoV-2 chal-
lenge doses. The mRNA-1273 vaccine candidate 
induced higher ACE2 binding inhibition (348 times 
as high), more potent receptor-binding domain 
and N-terminal domain antibody responses, and 
higher neutralizing activity (12 to 84 times as 
high) than was measured in a panel of convales-
cent-phase serum specimens obtained from pa-
tients with Covid-19 of various levels of clinical 
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severity. On the basis of recent data in humans 
that show a reduction in antibodies over time,44,45

vaccine-induced immunity that exceeds the anti-
body response to primary infection may be needed 
for durable protection. Studies are now under way 
to determine the durability of immunity and pro-
tection over 1 year after vaccination.

We hypothesize that the potent neutralizing 
activity induced by mRNA-1273 is based on two 
major factors. First, structure-based vaccine de-
sign was used to stabilize the S protein encoded 
by the mRNA vaccine.25 Stabilizing the prefusion 
conformation of class I fusion proteins has suc-
cessfully improved immunogenicity of these im-

Figure 4. Lung Histopathological Analysis and Viral Detection 7 Days after Challenge in mRNA-1273–Vaccinated 
Rhesus Macaques.

Seven days after challenge, lungs were harvested from two animals per group for histopathological analysis and assess‑
ment of evidence of viral infection; representative images taken at different degrees of magnification are shown for 
localization of virus by chromogenic in situ hybridization (CISH) and SARS‑CoV‑2 immunohistochemical analysis 
(IHC) in serial tissue sections. The images in Panel B are shown at twice the magnification of the images in Panel A.

PBS

PBS

Hematoxylin and Eosin CISH SARS-CoV-2 IHC

CISH SARS-CoV-2 IHC

10 µg

100 µg

 B 

A

100 µm 100 µm 100 µm

100 µm 100 µm 100 µm

100 µm

50 µm 50 µm

100 µm 100 µm

Viral RNA Viral Antigen 

The New England Journal of Medicine 
Downloaded from nejm.org on December 8, 2020. For personal use only. No other uses without permission. 

 Copyright © 2020 Massachusetts Medical Society. All rights reserved. 



n engl j med 383;16 nejm.org October 15, 2020 1553

Vaccine against SARS-CoV-2 in Nonhuman Primates

portant vaccine targets for respiratory syncytial 
virus,46,47 parainfluenza virus,48 Nipah virus,49 
MERS-CoV,6,25 and human immunodeficiency vi-
rus.50,51 This improvement is based on preserving 
neutralization-sensitive epitopes at the apex of 
prefusion structures52 and improved protein ex-
pression from transduced cells.6,25 Furthermore, 
anchoring the S-2P protein immunogen in the 
membrane also contributes to maintenance of the 
native conformation and antigenicity that im-
proves immunogenicity as compared with secret-
ed protein.6

The second major influence on the immune 
response is the formulation, purification, and 
delivery of the RNA. Accordingly, nucleoside 
modifications and the process of purifying RNA 
can limit the innate immune stimulation trig-
gered by RNA, thereby facilitating translation and 
prolonging protein production in vivo.53 More-
over, the modified RNAs have been shown to 
increase the frequency of CD4 Tfh cells in tis-
sues, which has promoted antibody responses to 
other viral antigens in nonhuman primates.40 In 
our study, it was notable that mRNA-1273 induced 
S-specific CD4 T cells that produce interleu-
kin-21, the canonical cytokine that defines Tfh 
cell responses, which suggests this as an addi-
tional mechanism for generating potent antibody 
responses.

Both vaccine groups had high-level protection 
and limited variation in detectable viral replica-
tion, as estimated by analysis of subgenomic RNA, 
and therefore we were not able to define specific 
immune correlates with this measurement as a 
protective end point; however, neutralizing po-
tency was negatively correlated with viral loads 
in the nose, as detected by PCR. On the basis of 
the rapid reduction in viral replication within 24 
to 48 hours after challenge and the detection of 
antibodies in BAL fluid, we postulate that anti-
bodies are the primary mechanism of protection 
for this vaccine. Passive-transfer studies involving 
serum from vaccinated animals will be needed to 
assess whether antibodies are necessary and suf-
ficient to mediate protection. Furthermore, stud-
ies encompassing lower, subprotective doses will 
be necessary to define a protective threshold and 
to evaluate antibody specificities or functions that 
correlate with protection.

A major potential concern in SARS-CoV-2 vac-
cine development is VAERD, which is associated 
with induction of nonneutralizing antibodies that 
can lead to immune complex formation, com-

plement activation, Th2-biased responses, and 
immunopathologic complications. Mitigating 
approaches that may be used to avoid vaccine-
enhanced disease syndromes include eliciting 
potently neutralizing antibodies with functional 
activity commensurate with binding, as well as 
avoiding Th2-biased CD4 T-cell responses.54 Here, 
we show that mRNA-1273 induces high levels of 
neutralizing activity and Th1 responses with low-
to-undetectable Th2 responses and no patho-
logic changes in the lung in either of the mRNA-
1273 vaccine groups 1 week after challenge.

A final issue addressed here is whether a 
nonhuman primate vaccine and infection model 
can inform clinical vaccine development. Al-
though the inoculum of SARS-CoV-2 that is re-
quired for efficient human transmission is not 
known, the amount of virus detected by PCR in 
the upper airways of humans immediately after 
infection is approximately 106 RNA copies per 
nasal swab.18 Consistent with that finding, after 
challenge with a dose of 7.6×105 PFU in this study, 
unvaccinated nonhuman primates had approxi-
mately 106 RNA copies per milliliter detected in 
their noses at day 1 after challenge. The results 
reported here provide data on mRNA-1273 im-
munogenicity and protection of the upper and 
lower airways in nonhuman primates that com-
plement the immunogenicity and safety data 
established by a phase 1 clinical study involving 
humans.
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