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ABSTRACT: This article is a personal perspective on male infertility, a condition that is not only extremely prevalent but also a major reason
for couples to resort to ART. The introduction of ICSI as a form of facilitated fertilization had a revolutionary impact on our capacity to treat
cases of male infertility associated with severely compromised semen quality. However, the widespread use of this technique is also thought
to pose risks in terms of the incidence of miscarriage, the health and wellbeing of the offspring and perpetuation of the infertile phenotype
into future generations. Furthermore, the advent of ICSI curtailed intellectual interest in the underlying aetiology of male infertility or the
development of non-invasive therapeutic strategies that target the male patient rather than the physical deployment of his gametes. As a con-
sequence, progress on elucidating the pathological mechanisms responsible for male infertility has been extremely slow. Genetic and/or epi-
genetic defects are certainly involved in many cases and may involve mutations/splicing defects affecting the integrity of the testicular RNA
profile, as well as the overall kinetics of the transcription process. In addition, spermatogenesis is disrupted by a variety of factors (age, smok-
ing, obesity) many of which are thought to influence fertility and the integrity of sperm DNA through the creation of oxidative stress.
Determining the relative contributions of oxidative stress and genetic/epigenetic mutations to the aetiology of male infertility will be a major
focus for future research in this important but neglected area

Key words: human spermatozoa / infertility / hamster oocyte penetration test / ART / ICSI / oxidative stress / lipid peroxidation / oxi-
dative DNA damage / gene mutation / Y-chromosome deletion

In the beginning
I never intended to be an andrologist. Both my PhD and postdoctoral
work had been on the uterine control of preimplantation development
and I had fully intended to continue my work on endometrial biochem-
istry when I joined Roger Short’s MRC Reproductive Biology Unit in
Edinburgh in 1977. However, after several months waiting patiently in
gynecology wards for some endometrial tissue to drop into my
stainless-steel bowl, I finally admitted defeat and started to think about
other areas of human reproduction, where the supply of clinical mater-
ial might be less limiting. Following discussion with Roger, we decided
on two priority areas of research—the development of novel approaches
to contraception, particularly vaccines, and the investigation of male
infertility.

At this time, ‘the male factor’ was recognized as a very common
cause of human infertility responsible for a great deal of private suffer-
ing and pain but a complete mystery as far as the underlying aetiology
was concerned. In 1977, the only diagnostic tool that we possessed
was the conventional descriptive semen profile and the only weapon
in our therapeutic armamentarium was artificial insemination by donor

(AID) employing cryostored human semen. The MRC Unit had just
recruited David Richardson, one of the pioneers of AID and the
demand for such services was high. In 1977, there were more than
2000 referrals for AID and more than 200 babies born as a result of
this procedure (Richardson, 1980). Despite the demand, there was
very little formal support for such services at the time and the activities
of AID centers were not closely regulated. AID was a temporary,
almost clandestine, solution to a problem—but it was not a cure for
the disease.

Prevailing wisdom on semen
quality
What did we know about male infertility at the time? The truth is, very
little. We were aware that male infertility was generally associated with
defects in the conventional semen profile that could influence the motil-
ity of the spermatozoa, their number or their morphology. However,
we had precious few insights into the origins of these changes or their
true significance. The prevailing andrological wisdom in 1977 was that
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infertility was really just a question of sperm number—a patient either
generated a sufficient number of morphologically normal, motile sperm-
atozoa to establish a pregnancy, or he did not. This kind of binary thinking
sits behind the threshold values for sperm number, morphology and motil-
ity which have been promulgated by theWorld Health Organization—and
argued about to this very day (Zhang et al., 2014). Such thinking also led to
futile attempts to treat infertility by inseminating pooled successive ejacu-
lates in order to compensate for the low sperm numbers found in oligo-
zoospermic males. Even as late as 1990, papers were appearing extoling
the virtues of combining of multiple ejaculates from oligozoospermic males
to increase the median total number of motile sperm in preparation for AI
(Tur-Kaspa et al., 1990). Unfortunately, such well-intentioned strategies
never met with significant success because the underlying principle was
flawed (Speichinger and Mattox, 1976). Male fertility was never simply a
question of sperm number.

This conclusion was brought home years later when we were con-
ducting trials in Edinburgh on hormonal approaches to male contra-
ception. In these studies, we were injecting exogenous testosterone
enanthate to suppress gonadotrophin production and temporarily
impair spermatogenesis. During the course of these trials, we were
surprised to see pregnancies attributable to treated men with sperm
counts that had been suppressed well into the pathological range (~3 ×
106/ml) (Wallace et al., 1992). Similar results have been observed by
others (World Health Organization, 1996) and serve to remind us that
fertility is poorly correlated with sperm concentration. If the spermato-
zoa are normal, then sperm counts well into the sub-normal range are
perfectly capable of establishing a pregnancy. Exactly the same conclu-
sion can be drawn from the pregnancies achievable with Kallmann syn-
drome patients following treatment with exogenous gonadotrophins,
where pregnancies are observed despite pathologically low sperm
counts (Dwyer et al., 2015; Rohayem et al., 2016). Another perfect illus-
tration of the weakness inherent in the conventional semen profile can
be found in a recent analysis of fertility in post-vasovasostomy patients.
In this group of males, spontaneous pregnancies were reported in 15%
of patients with a sperm concentration of <5 million/ml, 21.3% with a
sperm motility of <10%, and 14.8% with a normal morphology of <1%,
(Majzoub et al., 2017). The authors correctly conclude that the thresh-
olds of semen normality defined by the World Health Organization
(2010) may not adequately reflect fertility in vasectomy–reversal
patients in whom the underlying spermatogenic process is normal. All of
these examples point to the same conclusion—that you cannot determine
the fertilizing potential of a sperm population using descriptive semen para-
meters such as count, motility or morphology. Fundamentally, not all normal
looking, motile spermatozoa are created equal.

Of course, this does not mean that the conventional semen profile
has no value. On the contrary, when carefully performed it can clearly
generate data on relative semen quality for a given population. Using
the fifth centile of fertile men (time to pregnancy of ≤12 months) as
the lower threshold of normality (Cooper et al., 2010; Auger et al.,
2016), it is perfectly possible to determine whether a patient’s semen
quality is ‘normal’ in relation to males of proven fertility within the
same population. Whether ‘sub-normal’ in this context is equivalent
to ‘subfertile’ is more difficult to ascertain. As a prognostic tool the
semen profile lacks precision because it can only ever provide an indir-
ect indication of the relative efficiency of the underlying sperm produc-
tion process. It is not so much the appearance of the spermatozoa that
we should be focusing on, but rather, their capacity for fertilization.

Yanagimachi and the zona-free
hamster oocyte penetration test
In 1976 the revered gamete biologist, Ryuzo Yanagimachi, published a
sentinel paper on the fertilization of hamster ova by the spermatozoa
of different species, including man (Yanagimachi et al., 1976). This art-
icle was, literally, so incredible at the time, that it was initially rejected
by at least one of the field’s leading journals on the basis of being
‘impossible’. However, further research demonstrated that the ability
of human spermatozoa to fuse with zona-free hamster ova was not
only possible but physiologically meaningful, in that the architecture of
sperm–oocyte union appeared to replicate exactly the homologous
situation, i.e. that the equatorial segment of capacitated acrosome-
reacted spermatozoa suddenly acquires the ability to bind to, and fuse
with, the vitelline membrane of an MII oocyte (Fig. 1). This bioassay
gave us a powerful new tool to look at the fertilizing potential of
spermatozoa and really test the hypothesis that not all spermatozoa
are created equal. We developed standardized protocols for conduct-
ing the assay that were promulgated with the help of the World
Health Organization (Aitken, 1986) and demonstrated that the assay
was capable generating data of clinical relevance in long-term pro-
spective trials and donor insemination programs (Irvine and Aitken,
1986; Aitken et al., 1991). However, despite its biological relevance,
this assay was never going to be a diagnostic test for routine clinical
use; it was far too complex, labor intensive and difficult to standardize.
Rather, the hamster oocyte penetration assay was an excellent
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Figure 1 Relationship between the generation of ROS by human
spermatozoa and their capacity for sperm–oocyte fusion as measured
by the zona-free hamster oocyte penetration test. Insert shows a
zona-free hamster oocyte possessing several decondensed human
sperm heads in its cytoplasm (arrowed). Each data point is an inde-
pendent patient who can be allocated to one of three general categor-
ies: (i) high ROS, low fertilizing potential (blue) where oxidative stress
is implicated in the patients’ infertility, (ii) low ROS, low fertilizing
potential(green) where the infertility has some other cause and (iii)
low ROS, high fertilizing potential (red) where the spermatozoa
appear normal. After Aitken et al. (1989a).
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experimental research tool that allowed us to gain mechanistic insights
into the nature of defective sperm function.

An important, but overlooked, feature of this assay was that the
relationship between motile sperm concentration and fertilization rate
could be accurately modeled using Poison distribution theory (Aitken
and Elton, 1984). We used this facility to design experiments in which
we could compare the fertilizing potential of motile spermatozoa from
normal fertile donors with motile spermatozoa collected from patients
exhibiting idiopathic asthenozoospermia (<40% motility), astheno-
zoospermia associated with varicocele and oligoaesthenozoospermia
(<20 ×106 spermatozoa/ml and <40% motility). On a motile-sperm-
to-motile sperm comparative basis, the Poison distribution model con-
clusively demonstrated that not all motile spermatozoa are equivalent;
those recovered from fertile males possessed significantly more fertiliz-
ing potential than those recovered from infertile subjects (Aitken and
Elton, 1986).

So, if all motile spermatozoa are not created equal, what is it that
defines the difference in functional competence? A key insight into this
conundrum came when we discovered that the difference in oocyte-
fusion rates between normal and infertile males, was still evident when
calcium entry was artificially induced using the divalent cation iono-
phore, A23187 (Aitken et al., 1984, 1993a). Applying the Poisson
model, we could clearly show that the response of motile spermato-
zoa from infertile males to calcium ionophore exposure was signifi-
cantly compromised relative to fertile donors (Aitken et al., 1984).
Such results sharply focused attention on damage to the sperm plasma
membrane that might impair their capacity to respond to a calcium
influx with an increase in fusogenicity. This line of thinking ultimately
led us into the complex landscape of reactive oxygen species (ROS)
generation and oxidative stress.

A free radical theory of male
infertility
As early as 1979, Thaddeus Mann published a landmark paper with
Roy Jones and Dick Sherins highlighting the vulnerability of human
spermatozoa to oxidative stress (Jones et al., 1979). The significance
of this work became apparent when we discovered that the gener-
ation of ROS was significantly elevated in sperm suspensions from
infertile males (Aitken and Clarkson, 1987). The excessive generation
of ROS by these cells was found to induce peroxidative damage in the
sperm plasma membrane as a consequence of which the spermatozoa
lost their capacity to respond to calcium signals with an increase in
sperm–oocyte fusion. Thus experimentally, we could show that if nor-
mal spermatozoa were artificially exposed to ROS in vitro, they lost
their ability to fertilize oocytes following stimulation with A23187, pre-
cisely recapitulating the in vivo situation (Aitken et al., 1993b). Similarly,
the induction of lipid peroxidation in normal spermatozoa following
exposure to catalytic quantities of Fe (II), resulted in the production of
populations of spermatozoa that were incapable of responding to
A23187, just like the infertile population (Aitken et al., 1993c). The
fundamental conclusion of these studies was that the loss of sperm
functionality in cases of male infertility involved some element of oxida-
tive stress. Figure 1 demonstrates the strength of this association, with
most defective sperm–oocyte fusion associated with high levels of ROS
generation. Importantly, this phenomenon did not account for every

case of defective sperm function in the cohort of patients examined—
but it did account for around 55% of cases where the fertilizing capacity
of the spermatozoa was profoundly impaired (Aitken et al., 1989a,b).

Measuring ROS generation
The major caveat with this type of analysis was that it involved the use
of luminol-dependent chemiluminescence to detect the cellular gener-
ation of ROS. The luminol technique is highly sensitive but suffers from
two major problems. Firstly, it is not specific for any particular species
of ROS and secondly it will generate very strong signals in the presence
of leukocytes, which contaminate every human sperm suspension. In a
very long, painstaking piece of work, we carefully dissected out the
contributions of leukocytes and spermatozoa to the chemilumines-
cence signal and concluded that while leukocyte contamination is a
major contributor to overall ROS generation by human sperm suspen-
sions (Kessopoulou et al., 1992), it is not the only source (Aitken and
West, 1990; Aitken et al., 1992). This conclusion was also subse-
quently reached by others (Whittington and Ford, 1999) and was put
beyond doubt by the advent of flow cytometry procedures that
allowed specific focus on ROS generation by the sperm cell population
(De Iuliis et al., 2006; Purdey et al., 2015).

A variety of well-authenticated fluorescent probes are now available
for detecting ROS generation by human sperm populations. One of
the first to be evaluated was dihydroethidium, the 2-electron reduction
product of ethidium (De Iuliis et al., 2006). In this study high-performance
liquid chromatography, mass spectrometry, nuclear magnetic resonance
spectroscopy, and spectrofluorometry were all used to demonstrate that
human spermatozoa generate the superoxide-specific product, 2-
hydroxyethidium, from DHE.While this study provided definitive evidence
for superoxide generation by human spermatozoa there are two reserva-
tions with the use of this probe in clinical practice. The first is that the
probe has to be used in conjunction with a vitality stain such as SYTOX
green. The reason for this is that commercial preparations of DHE contain
trace amounts of the parent ethidium compound, which will stain the
nuclei of dead cells, red, irrespective of whether or not they are generating
ROS. In practice, this assay only has biological meaning when focused on
the subpopulation of viable spermatozoa. Secondly, we should acknow-
ledge that a wide variety of oxidation events will convert DHE into the
DNA-sensitive fluorochrome, ethidium, not just superoxide anion. Since
flow cytometry will not distinguish between signals generated by
2-hydroxyethidium (superoxide specific) and ethidium (non-specific oxida-
tion) care should be take when ascribing the results to ROS generation.
These caveats (the need to focus on live cells and awareness of the possi-
bility of non-specific oxidation) apply to most of the probes currently used
to detect ROS by flow cytometry.

Sources of ROS inmammalian
spermatozoa

The spermmitochondria as ROS generators
The source of ROS in defective spermatozoa is also a matter for con-
jecture although there seems to be general agreement that the leakage
of electrons from the mitochondrial electron transport chain (ETC) is
a significant factor (Koppers et al., 2008; Cassina et al., 2015). Such
spontaneous mitochondrial ROS generation is known to lead to a loss
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of mitochondrial membrane potential, the induction of lipid peroxida-
tion and the suppression of sperm movement (Chai et al., 2017). In
this context, at least three major pathways are known to be involved
in eliciting mitochondrial ROS generation by spermatozoa:

• Exposure to amphiphiles that disrupt mitochondrial electron transport.
Free unesterified polyunsaturated fatty acids (PUFA) induce high
levels of mitochondrial ROS generation, when added to purified
populations of human spermatozoa. This relationship is biologically
and clinically important because powerful correlations have been
observed between the spontaneous generation of ROS by human
spermatozoa and their free PUFA content (Koppers et al., 2008). A
key structural determinant of the PUFA that are capable of enhan-
cing mitochondrial ROS generation is that they should possess
amphipathic properties, i.e. possess a hydrophilic region that will
locate to the surface of the membrane and a hydrophobic domain
that will penetrate into the membrane’s interior (Aitken et al.,
2006). The embedding of free PUFA in the inner mitochondrial
membrane appears to perturb electron flow along the ETC, leading
to electron leakage and superoxide anion generation. Fatty acids
are not alone in this context; we have also discovered a variety of nat-
ural (retinoids) and unnatural (parabens) amphipathic compounds that
will trigger mitochondrial ROS via the same mechanism.

• Chemical adduction of mitochondrial proteins with powerful electro-
philes. Examples of compounds that form adducts with mitochon-
drial proteins are 4-hydroxynonenal (4HNE) or acrolein, both of
which are aldehydes generated as a consequence of lipid peroxidation
(Aitken et al., 2012). Such activity explains a very important attribute
of oxidative stress in spermatozoa—it is a self-perpetuating phenom-
enon. Once oxidative stress is initiated by such factors as antioxidant
depletion, exposure to free radical-generating leukocytes or treatment
with compounds such as PUFA, the stressed state becomes perpetu-
ated because the lipid aldehydes generated as a consequence of the
peroxidation process trigger yet more ROS generation from the mito-
chondria following the formation of adducts with proteins within the
ETC such as succinate dehydrogenase (Fig. 2; Aitken et al., 2012).
ROS–induced-ROS-generation has been observed by many authors
(du Plessis et al., 2010) and is explained by this mechanism.
Furthermore, this phenomenon would also explain leukocyte-induced
ROS generation by human spermatozoa (Saleh et al., 2002).

Importantly lipid aldehydes are not the only electrophiles cap-
able of generating this activity. Gossypol, a constituent of cotton
seed oil once proposed as a male contraceptive, will also activate
ROS generation by alkylating key proteins within the ETC (Aitken
et al., 2016b). The homocysteine cyclic congener, homocysteine
thiolactone is another compound capable of activating mitochon-
drial ROS generation as a consequence of its ability to bind proteins
in the ETC (Aitken et al., 2016a). The negative impact of homocyst-
eine is exacerbated by oxidative stress because paraoxonase 1
(PON-1), the major enzyme responsible for removing thiolactone
from proteins, is another target for alkylation by lipid aldehydes gen-
erated as a consequence of oxidative stress. Exposure to 4HNE
therefore leads to homocysteine accumulation in spermatozoa and
the further stimulation of mitochondrial ROS generation. There is
an embryonic literature on the relationship between hyperhomo-
cysteinaemia and male infertility (Ebisch et al., 2006; Ge et al., 2008)
that might be worthy of exploration in future studies.

• Reduced mitochondrial expression of the prohibitin complex. The latter
is a macromolecular structure within the inner mitochondrial mem-
brane that is thought to possess a scaffold-like function, maintaining
the structural integrity of complexes involved in the ETC. Reduction
of prohibitin levels is seen in the spermatozoa of infertile patients in

a manner that is negatively correlated with the induction of mito-
chondrial ROS generation (Chai et al., 2017). Since prohibitin is
vulnerable to oxidative attack (Opii et al., 2007) and can be down-
regulated in the testes by oxidative stress (Li et al., 2016), this may
be yet another example of a ROS-mediated attack on the male
germ line leading to changes that perpetuate the stressed state.

• Opening of the mitochondrial permeability transition pore (Treulen
et al., 2015). Opening of the pore leads to a loss of mitochondrial
membrane potential, the dysregulation of electron flow through the
ETC and the consequential generation of ROS. Once again, oxida-
tive stress can precipitate opening of the inner mitochondrial mem-
brane pore, via mechanisms that can be reversed by the presence
of melatonin (Waseem et al., 2016).

• The induction of apoptosis. One part of the puzzle that we should not
lose sight of is that mitochondrial ROS generation is a key feature of
the truncated apoptotic pathway engaged by spermatozoa when
they become stressed. There are no known chemical triggers for
apoptosis in spermatozoa that have physiological relevance; rather,
apoptosis is their default state. Spermatozoa will automatically
engage this pathway unless they are prevented from doing so by the
action of prosurvival factors. The key here seems to be the phos-
phorylation status of AKT1 (Fig. 3). As long as the latter is phos-
phorylated, the cells are alive and functional and downstream
effectors of apoptosis such as Bcl-2-associated death promoter
(BAD) are silenced. The key to maintaining AKT1 in a phosphory-
lated state is to ensure that the enzyme responsible for its phos-
phorylation, phosphatidylinositol 3-kinase (PI3 kinase), is always in
an activated state. There are probably many prosurvival factors cap-
able of performing this role; prolactin and insulin (Aquila et al.,
2005; Pujianto et al., 2010) are the ones we know about, but there
are undoubtedly many others. Conversely, if PI3 kinase activity is
suppressed with a compound such as wortmannin, then AKT1
becomes rapidly dephosphorylated and the cells enter the intrinsic
apoptotic pathway characterized by caspase activation in the cyto-
sol, annexin V binding to the cell surface, mitochondrial ROS gener-
ation, cytoplasmic vacuolization, oxidative DNA damage and
motility loss (Koppers et al., 2011).

NADPH oxidase
Apart from the sperm mitochondria there are a variety of other poten-
tial sources of ROS in spermatozoa that are of considerable interest
but unknown significance. For many years, the notion of an NADPH
oxidase in spermatozoa has been promoted as a possible source of
ROS. There is no doubt that spermatozoa do contain NADPH oxi-
dases including NOX5, a calcium regulated NADPH oxidase which is
expressed at high levels in both the testes and spleen (Bánfi et al.,
2001). In keeping with the presence of such a calcium-dependent oxi-
dase exposure of suspensions of human spermatozoa to calcium iono-
phores such as A23187 or ionomycin, has been reported to trigger
ROS production (Aitken and Clarkson, 1987; Musset et al., 2012),
However, it should be acknowledged that these studies did not involve
the use of purified sperm preparations from which all traces of leuko-
cyte contamination had been removed. It is therefore possible that the
putative NADPH oxidase detected in these sperm suspensions was, in
fact, due to leukocyte contamination. The inhibitory action of apocynin
(a NOX inhibitor) on ROS generation by human spermatozoa suffers
from the same problem because the chemiluminescent signal recorded
in these experiments might have been generated by contaminating leu-
kocytes (Donà et al., 2011). The fact that diphenylene iodonium
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suppresses ROS generation by human spermatozoa is also not defini-
tive evidence for an NADPH oxidase because this flavoprotein inhibi-
tor can also suppress ROS generation by mitochondria (Li and Trush,
1998). Furthermore, the use of exogenous NADPH to stimulate luci-
genin chemiluminescence by human spermatozoa (Aitken et al., 1997)
is not evidence of an oxidase, because the signals generated under
these conditions reflect the direct reduction of the probe by oxidore-
ductases; cytochrome b5 reductase in the case of NADH and cyto-
chrome p450 reductase in the case of NADPH (Baker et al., 2004,
2005) Moreover, superoxide anion generation has not be detected fol-
lowing the addition of exogenous NADPH to human spermatozoa (de
Lamirande et al., 1998).

Amino acid oxidase and lipoxygenase
Additional potential sources of ROS in spermatozoa include amino acid
oxidases and lipoxygenase. L-amino acid oxidases were, in fact, the first

enzymes to be associated with ROS generation in spermatozoa as a
result of the pioneering work of Tosic and Walton in the 1940s and 50s
(Tosic and Walton, 1950). These authors demonstrated that the loss of
motility observed in bovine spermatozoa in the presence of egg yolk
extenders could be attributed to hydrogen peroxide generation by an
amino acid oxidase exhibiting a particular affinity for aromatic amino acids
such as phenylalanine. Tosic and Walton also found that the responsive-
ness of this enzyme system was enhanced by cell death, which presum-
ably provided the oxidase with unfettered access to its substrate. We
have found exactly the same enzyme activity in equine spermatozoa
(Aitken et al., 2015) and again demonstrated that dead spermatozoa are
particularly responsive to the presence of substrates such as phenylalan-
ine and that the ROS generated under such conditions can compromise
the functionality of live cells in the same suspension—but what of human
spermatozoa? We have detected this enzyme activity in human sperm
cells (Houston et al., 2015) and found that unlike equine and bovine
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spermatozoa, this enzyme is rapidly lost from non-viable cells. However,
stimulation of intracellular hydrogen peroxide generation with extracellu-
lar phenylalanine was found to enhance capacitation and the ability of the
spermatozoa to acrosome react suggesting a physiological role for the
IL4I1 l-amino acid oxidase in human spermatozoa, potentially driven by
the free amino acids present in the secretions of the female reproductive
tract (Houston et al., 2015). There is no evidence to suggest that IL4I1 is
in any way involved in the ROS generation seen in the spermatozoa of
subfertile males.

Another possible trigger for ROS generation in human spermatozoa
is lipoxygenase. This enzyme (ALOX15) is known to generate ROS in
several cellular systems and its inhibition in male germ cells leads to a
significant reduction in both mitochondrial and cytoplasmic ROS gen-
eration, as well as a dramatic reduction in 4HNE (Bromfield et al.,
2017). This observation is in keeping with the increased availability of
free fatty acids in the spermatozoa of subfertile males and the fact that
exposure of spermatozoa to free unesterified PUFA, such as arachi-
donic acid, trigger the rapid generation of ROS by human spermatozoa
(Koppers et al., 2010). This is an important area for further study since
ALOX15 might be a potential target for ameliorating oxidative stress
in defective human spermatozoa. The clear link between the retention
of excess residual cytoplasm by human spermatozoa and subsequent
ROS generation (Gomez et al., 1996) provides a potential mechanism
by which defective spermatogenesis might generate cells that are over-
endowed with enzymes such as ALOX15 that might then trigger
increased ROS generation and oxidative stress.

Importance of peroxynitrite
Clearly there is no simple answer when it comes to addressing the
source of ROS in human spermatozoa and we should keep an open
mind as to which sources dominate at different stages of germ cell
development. Moreover, while this review has focused on ROS it
should be acknowledged that, in vivo, reactive nitrogen species (RNS)
are also important (Uribe et al., 2015). Indeed, peroxynitrite is a very
powerful oxidant generated by the reaction of superoxide anion with
nitric oxide that has been postulated to mediate a continuous capacitation-
apoptosis highway (Fig. 3). According to this model, peroxynitrite generated
in spermatozoa following ejaculation induces several of the early features of
capacitation including cholesterol efflux from the plasma membrane, PS
exposure, presentation of zona-receptor complexes on the sperm surface,
inactivation of tyrosine phosphatases, and stimulation of cAMP production
(Aitken, 2011). However, if spermatozoa capacitated via this mechanism
fail to meet an egg, then the continued generation of peroxynitrite will carry
the spermatozoa over the top of the hill of functional competence and
down into the cul de sac of apoptosis. This is the senescent fate that awaits
a vast majority of spermatozoa in the ejaculate.

A loss of fertilizing potential is, of course, not the only impediment
created by oxidative stress in the male germ line. Of even greater sig-
nificance in some ways, is the induction of genetic and epigenetic muta-
tions that influence the development normality of the offspring.

DNA damage in human
spermatozoa

The importance of oxidative stress
The physical architecture of spermatozoa prevents endonucleases
released from the mitochondria (e.g. endonuclease G [Endo G] or
apoptosis inducing factor [AIF]) or activated in the cytosol (e.g. caspase-
activated DNase [CAD]) during the intrinsic apoptotic cascade from
penetrating the sperm nucleus (Fig. 4). This is because spermatozoa are
structurally unique in that the mitochondria and nucleus are in different
compartments of the cell. As a result of this unique structural feature,
the sperm nucleus is largely shielded from the powerful nucleases gener-
ated in the mitochondria and cytoplasm during apoptosis. Charged ROS
such as the superoxide anion are also prevented from penetrating the
sperm nucleus; however, this limitation will not apply to uncharged
ROS, such as hydrogen peroxide (Fig. 4).

These considerations have major implications for the aetiology of
DNA damage in spermatozoa because DNA can only be fragmented
by two mechanisms: (i) exposure to ROS or (ii) the action of
nucleases. If nucleases are physically trapped in the midpiece of the cell
then the only mechanism by which DNA damage can be induced is by
oxidative attack. It is for this reason that we have asserted that most, if
not all, DNA damage in spermatozoa is instigated by ROS and
reflected by the formation of oxidative DNA adducts, particularly
8-hydroxy,2′deoxyguanosine (8OHdG) (Kodama et al., 1997; Aitken
et al., 2010). In contrast, mitochondrial DNA is not protected from
nucleases released during apoptosis. This feature, plus the fact that
mitochondrial DNA is not protected by complexation with proteins,
make this particular form of DNA an excellent marker for genetic
damage in spermatozoa (Sawyer et al., 2003), which is currently
under-exploited.
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Cyt C

Caspase activation 

Regulated Cell Death 

Bax/Bak

Mitochondria

PI3 kinase
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14-3-3

P
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Figure 3 The survival of human spermatozoa depends on the
phosphorylation status of AKT1. As long as this enzyme is phosphory-
lated and active, the downstream targets of this kinase are also phos-
phorylated, ensuring, among other things, that proapoptotic factors
such as BAD are held in an inactive state and apoptosis is prevented. As
soon as AKT1 is dephoshorylated, BAD dissociates from its 14-3-3 kee-
per protein, engages with the sperm mitochondria and initiates the
intrinsic apoptotic cascade. AKT1 phosphorylation is in turn, maintained
through the action pf PI3 kinase in response to stimulation by prosurvival
factors such as prolactin and insulin. Based on Koppers et al. (2011).
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When DNA damage does occur, it may have important implications
for the offspring because spermatozoa with damaged DNA can still be
capable of fertilization (Aitken et al., 1998, 2013). In this context it is
worth reflecting that sperm chromatin is not uniformly vulnerable to
oxidative attack. There is a distinct variation between chromosomes
in their susceptibility to oxidative base damage (8OHdG density) dri-
ven by the highly ordered and specific organization of sperm chroma-
tin. Most sperm domains that are vulnerable to oxidation lie at the
periphery of the sperm nucleus, where the telomeres are highly con-
centrated, or close to the sperm midpiece, in the vicinity of free
radical-generating mitochondria. Furthermore there are particularly
vulnerable areas of the sperm nucleus, between the highly compacted
protamine-enriched toroids, where compaction is reduced and the
DNA is susceptible to oxidative attack because it is either naked or in
a loosely compacted nucleosomal arrangement. These inter-toroid
regions are particularly rich in short interspersed repeat elements
(SINEs) and long interspersed repeat elements (LINEs) as well as cen-
tromeres and telomeres. In both mouse and human spermatozoa the
sex chromosomes appear to be particularly well-protected from oxi-
dative attack, while certain autosomes, by virtue of their composition
and positioning within the sperm nucleus, are highly vulnerable. In the

mouse chromosome 19 appears to be particularly vulnerable while in
human spermatozoa the vulnerable chromosomal domain is 15q13–
15q14, potentially encompassing the paternally inherited imprinting
center that is 5′ to this region (Noblanc et al., 2013; Kocer et al., 2015;
Xavier, M., unpublished observations). Importantly locus 15q13–15q14
maps to a chromosomal hotspot associated with variable cognitive and
other neuropsychiatric expression, including conditions that we know
are paternally driven and thus associated with defects in spermatozoa
(e.g. epilepsy, autism spectrum disorder and spontaneous schizophre-
nia; Lowther et al., 2017).

DNA repair in spermatozoa
Since the limited cytoplasmic space available in these highly specialized
cells places constraints on the availability of antioxidant enzymes, one
of the major defensive strategies employed by spermatozoa is to
tightly complex the DNA with protamines. The latter serve as sacrifi-
cial antioxidants and also bind transition metals such as copper that
would otherwise catalyze the formation of hydroxyl radicals and the
induction of DNA fragmentation (Kasprzak, 2002; Aitken et al., 2014).
In keeping with this role for protamines, we have found that DNA

Mitochondria

nucleus
AIF

Control Wortmannin

Control Wortmannin

EndoG

H2O2

Apoptosis

Somatic cell DNA laddering

A B C

Figure 4 The unusual architecture of spermatozoa influences the induction of DNA damage in these cells. (A) In somatic cells, endonucleases
released from the mitochondria or activated in the cytosol during apoptosis, move into the nuclear compartment and cut the DNA, generating the
characteristic laddering pattern following electrophoresis. (B) In spermatozoa, the mitochondria (labeled black) and most of the cytoplasm are located
in the midpiece of the cell, away from the nuclear compartment. (C) As a result of this unique arrangement, nucleases associated with apoptosis such
as Apoptosis Inducing Factor (AIF) and Endonuclease G (EndoG) remain resolutely locked in the midpiece of the cell when apoptosis is induced by
wortmannin. Only a membrane permeant molecule such as hydrogen peroxide (B) has the capacity to move from the sperm midpiece to the nucleus
during apoptosis. It is for this reason that the instigation of DNA damage in spermatozoa is usually oxidative.
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fragmentation in human spermatozoa is inversely correlated with the
level of DNA protamination as determined by the intercalating DNA
dye, chromomycin A3 (De Iuliis et al., 2009). The protective role of
chromatin protamination has been repeatedly observed by others
(Manochantr et al., 2012; Fortes et al., 2014; Ghasemzadeh et al.,
2015) resulting in the articulation of a 2-step hypothesis of DNA frag-
mentation in spermatozoa comprising: Step 1, where a defect in sper-
miogenesis leads to poorly protaminated chromatin, creating a state of
vulnerability in the cell and then Step 2, during which this vulnerable
chromatin becomes attacked by ROS, generating high levels of
8OHdG formation (De Iuliis et al., 2009).

The 8OHdG formed during this process is targeted and removed by
the first enzyme in the base excision pathway (BER) 8-oxoguanine
DNA glycosylase (OGG-1). This glycosylase is associated with the
sperm nucleus and mitochondria and actively removes 8OHdG,
releasing this base adduct into the extracellular space (Smith et al.,
2013a,b). Remarkably, spermatozoa do not possess the downstream
components of the base excision repair pathway, apurinic endonucle-
ase 1 (APE1) and X-ray-repair-complementing-defective-repair-in-
Chinese-hamster-cells 1 (XRCC1). The result of this truncated BER is
therefore to generate an unresolved abasic site within the DNA
duplex which cannot be prepared for the insertion of a new base by
the spermatozoon; this task falls to the oocyte, which is richly
endowed with both APE1 and XRCC1 (Smith et al., 2013b). The pres-
ence of such unresolved abasic sites ultimately destabilizes the DNA
and renders it vulnerable to DNA strand breakage.

One of the interesting practical consequences of this truncated BER
pathway is that Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assays cannot theoretically be applied to spermato-
zoa because this assay depends on terminal deoxynucleotidyl transfer-
ase (TdT) sequentially adding tagged nucleotides to the 3′-hydroxyl
termini of DNA double strand breaks. In the absence of APE1 no
3′-hydroxyl groups will be available for the terminal transferase to tar-
get. In keeping with this assertion, when DNA damage is induced in
human spermatozoa with hydrogen peroxide, the cells rapidly become
8OHdG positive and show signs of DNA damage with Sperm
Chromatin Structure Assay (SCSA) but are negative with regard to the
TUNEL assay. Despite this, there is abundant evidence that human
spermatozoa do become TUNEL positive if they are defective
(Mitchell et al., 2011). This conundrum was resolved when it was
found that spermatozoa exposed to an oxidative stress ultimately
become TUNEL positive but it takes around 48 h for this change to
manifest itself (Smith et al., 2013b). Such observations are strongly
supportive of the perimortem activation of a nuclease in the sperm
nucleus, as suggested by others (Boaz et al., 2008). However, the iden-
tity of this proposed intra-nuclear nuclease has yet to be determined.

Impact of sperm DNA damage on the next
generation
One consequence of the truncated BER pathway in mammalian
spermatozoa is that spermatozoa which are perfectly capable of fertil-
ization will, nevertheless, carry both abasic sites and non-excised
8OHdG adducts into the egg at the moment of fertilization (Aitken
et al., 1998). The presence of such oxidized bases is a source of con-
cern because they are extremely mutagenic, creating mutations in the
offspring, typically involving G:C–A:T transversions, as a result of

Hoogsteen base pairing. For example, the increase in childhood can-
cers seen in the offspring of male smokers (Lee et al., 2009) may well
reflect the elevated levels of 8OHdG seen in the spermatozoa of such
subjects (Fraga et al., 1996). Similarly, the increase in brain disorders
such as autism, spontaneous schizophrenia and bipolar disease seen
with paternal age, could also be associated with the increased levels of
oxidative DNA damage seen in the spermatozoa as a consequence of
the ageing process (Smith et al., 2013a). Such relationships may also
underpin the increased incidence of autism seen in children conceived
by ICSI (Kissin et al., 2015) reflecting the high levels of 8OHdG expres-
sion seen in the spermatozoa of male infertility patients (Meseguer
et al., 2008; Aitken et al., 2010). These causative relationships between
8OHdG formation in spermatozoa, defective repair of this lesion in
the oocyte and increased mutation frequencies in the offspring, is a
critical component of the paternal contribution to abnormal develop-
ment (Aitken et al., 2004). It is at the heart of the impact of paternal
ageing on the health and wellbeing of children and may also underpin
the means by which a complex array of environmental, lifestyle and
clinical factors impact on the developmental normality of children.
Examples of external factors that could potentially influence offspring
health by creating oxidative DNA damage in the male germ line include
electromagnetic radiation (Houston et al., 2016), obesity (Lane et al.,
2014), smoking (Fraga et al., 1996) and a wide range of environmental
pollutants including products from the chemicals industry (phthalate
esters, bisphenol A) preservatives (parabens), insecticides (Firpronil)
herbicides (alachlor) and therapeutic agents (paracetamol) (Grizard
et al., 2007; Khan et al., 2015; Barbonetti et al., 2016; Lu et al., 2017).

Where is the definitive antioxidant trial?
If oxidative stress is such an important cause of male infertility then it
would seem reasonable to propose that antioxidants should be part of
the cure. In animal models exhibiting infertility as a consequence of
oxidative stress (the GPx5 knock-out mice and a testicular heating
model; Chabory et al., 2009; Aitken, 2009; Pérez-Crespo et al., 2008)
there is irrefutable evidence that antioxidants can effectively reverse
the consequences of oxidative stress in the male germ line in vivo
(Gharagozloo and Aitken, 2011; Gharagozloo et al., 2016). Similarly,
in vitro, there is abundant evidence to indicate that antioxidants can
reverse the negative impact of oxidative stress sustained during the
cryostorage of spermatozoa in a large number of disparate species
including the stallion (Ghallab et al., 2017), ram (Gastal et al., 2017),
bull (Eidan, 2016) goat (Seifi-Jamadi et al., 2017), rooster (Partyka
et al., 2017), rabbit (Zhu et al., 2017), man (Thomson et al., 2009;
Parameswari et al., 2017), boar (Gadani et al., 2017), buffalo
(Longobardi et al., 2017), dog (Setyawan et al., 2016) and mouse
(Chen et al., 2016). However, data to support the use of oral antioxi-
dant therapy to treat human male infertility has been frustratingly diffi-
cult to produce (Suleiman et al., 1996). A clinical trial of antioxidant
effectiveness would naturally need to be placebo-controlled and
should involve the selection of patients on the basis of oxidative stress
in their spermatozoa. In order to select such patients a variety of
biomarkers might be employed targeting such processes as lipid per-
oxidation (malondialdehyde, 4-hydroxynonenal, 4-hydroxyhexanal,
acrolein) oxidative DNA damage (8OHdG), protein carbonyl forma-
tion and ROS production. Moreover, the success of the treatment
should be evaluated in terms of improvements in the selected marker
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of oxidative stress as well as aspects of sperm function that are known
to be vulnerable to oxidative attack including motility (Jones et al.,
1979; Aitken et al., 1989a,b) and sperm–egg recognition (Bromfield
et al., 2015). Pregnancy is, of course, an important outcome (Showell
et al., 2014), however, there are many factors contributing to a suc-
cessful outcome in this regard not just the quality of the spermatozoa.
In a perfect world we would also look, not just at live pregnancy rates,
but also at the mutational load carried by the offspring.

Final thoughts
Male infertility is an aspect of human reproduction desperately in need
of attention. It is a highly prevalent condition, affecting around 10% of
the male population according to a recent survey (Datta et al., 2016).
Moreover, it has relevance not just for fertility but also for the health
and wellbeing of future generations. Yet, after decades of study, the
underlying aetiology of this condition is still shrouded in uncertainty.
Oxidative stress appears to be a major component of the male infertil-
ity landscape and, importantly, a mechanism by which extrinsic envir-
onmental and lifestyle factors can influence not just the fertility of
individuals but also the health of their children. However, it is not the
only factor. Spermatogenesis is an inherently complex, highly inte-
grated system that can become compromised for a variety of genetic
and epigenetic reasons that have nothing to do with oxidative stress
(Jamsai and O’Bryan, 2011; Flannigan and Schlegel, 2017; Jenkins et al.,
2017). Some of these we know about (Y-chromosome deletions,
Kallmann syndrome, primary ciliary dykinesias, globozoospermia, pro-
tamine deficiencies, mutations in CFTR, etc.) and involve defects in
known genes. However, it is probable that many cases of infertility do
not involve mutations in the coding areas of the genome but lesions in
non-coding regions that affect the timing and magnitude of gene
expression rather than the functional integrity of the proteins they
encode. Whichever regions of the genome are involved, recent data
clearly suggest that male infertility has a heritable component that
assisted reproductive technologies serve to perpetuate, ensuring that
the infertility affecting the fathers of ICSI children will be revisited upon
their sons (Belva et al., 2016). A major task that now awaits our atten-
tion is to define the relative contribution of such genetic/epigenetic
factors and oxidative stress in both the causation of male infertility and
the long-term health trajectory of the offspring. The green shoots of
discovery are certainly beginning to appear but, for the moment, desi-
deration and achievement in this area are standing on opposite banks
of a river deep in misunderstanding and neglect.
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